Abstract

We have investigated the structural and electronic properties of individual ethylene molecules on the GaP(110) surface by combining low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) with density functional theory (DFT) calculations. Isolated molecules were adsorbed on in situ cleaved GaP(110) surfaces through ethylene exposures at 300 K and 15 K. DFT calculations suggest two possible stable adsorption geometries for a single ethylene molecule on GaP(110) at low temperature. High-resolution STM images, however, reveal only one adsorption geometry for this system, consistent with the site having the largest computed binding energy. Unlike adsorption of ethylene on other metallic and semiconducting surfaces, ethylene physisorbs to GaP(110) through a weak hybridization of molecular π-states with substrate surface states, leaving the frontier molecular orbitals largely unperturbed. Differential conductivity spectra acquired on single molecules are consistent with self-energy corrected...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.