Abstract

To separate Mo(VI) from high-level liquid waste, a silica-based (anti-DEHDO + Dodec)/SiO2-P adsorbent was synthesized by impregnating an anti-isomer of 5,8-dietyl-7-hydroxy-6-dodecanonoxime (DEHDO) as a hydroxyoxime-type extractant and a molecule modifier of 1-dodecanol into a SiO2-P support, where “P” indicates the polymerized styrene–divinylbenzene inside macroporous SiO2 particles. Adsorption and separation behaviors of Mo(VI) in HNO3 solutions onto the adsorbent were investigated by batch and column methods, respectively. The adsorbent can effectively adsorb Mo(VI) in both methods. In addition, Pd(II) and Zr(IV) contained in the simulated high-level liquid waste were successfully isolated by the adsorbent packed column, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.