Abstract

This paper reports the adsorption of toxic gases (NO2, SO2, and NH3) on a MoSeTe structure based on first principles. It was found that the gas (NO2, SO2, and NH3) adsorption on a pure MoSeTe monolayer was weak; however, the adsorption performance of these gas molecules on transition-metal-atom-supported MoSeTe monolayers (TM-MoSeTe) was better than that on pure MoSeTe monolayers. In addition, there was more charge transfer between gas molecules and TM-MoSeTe. By comparing the adsorption energy and charge transfer values, the trend of adsorption energy and charge transfer in the adsorption of NO2 and SO2 was determined to be Fe-MoSeTe > Co-MoSeTe > Ni-MoSeTe. For the adsorption of NH3, the effect trend was as follows: Co-MoSeTe > Ni-MoSeTe > Fe-MoSeTe. Finally, by comparing their response times, the better gas sensor was selected. The Ni-MoSeTe system is suitable for NO2 gas sensors, and the Fe-MoSeTe and Co-MoSeTe systems are suitable for SO2 gas sensors. The Fe-MoSeTe, Co-MoSeTe, and Ni-MoSeTe systems are all suitable for NH3 gas sensors. Janus transition-metal dichalcogenides have the potential to be used as gas-sensing and scavenging materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call