Abstract

We performed a combined experimental and theoretical study of the conjugates obtained from single-walled carbon nanotubes and anticancer antibiotic doxorubicin (DOX). Atomic force microscopy (AFM) imaging at lower magnification revealed, extended regions of single-walled carbon nanotubes (SWNTS) fully covered with DOX adsorbed molecules, along with some bare parts without the adsorbed drug, thus suggesting that the DOX adsorption is a cooperative process. Ambient atmosphere scanning tunneling microscopy (STM) at higher resolutions found that individual SWNTs-DOX conjugates exhibit a periodic texture, whose most important morphological feature is alternating depressions and protrusions along the nanotube. Based on the images and profiles measured, we suggest that doxorubicin molecules self-assemble on SWNTs sidewall according to a helical pattern, in which their tetracyclic fragments are turned with respect to the nanotube axis by about 50[Formula: see text]. To provide an additional insight into the structure of noncovalent SWNTs-DOX conjugates, we employed density functional theory (DFT) calculations with three long-range corrected functionals: M05-2X, wB97X-D and LCBLYP, of which M05-2X yielded the most realistic results in terms of geometries and energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call