Abstract

Triphenylmethane (TPM) dye is one of the most prevalent and recalcitrant water contaminants. Magnetic reduced graphene oxide (rGO) is an efficient adsorbent for organic pollutants removal. However, the performance and adsorption kinetics of magnetic rGO towards TPM have not yet been studied. In this study, a magnetic Fe3O4@rGO nano-composite, which could be easily removed from water with a simple magnetic separation step was synthesized and characterized. The magnetic rGO showed fast adsorption rate and high adsorption capacity towards different TPM dyes (the Langmuir monolayer adsorption capacity is 64.93 mg/g for adsorption of crystal violet). The adsorption processes are well-fitted to the pseudo-second-order kinetic model (R(2) > 0.99) and the Langmuir isotherm model (R(2) = 0.9996). Moreover, the magnetic rGO also showed excellent recycling and regeneration capabilities. The results indicated that adsorption with magnetic rGO would be a promising strategy to clean up the TPM contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call