Abstract

Electrochemical surface‐enhanced Raman spectroscopy (EC‐SERS), combined with cyclic voltammetry, and the density functional theoretical (DFT) method were used to investigate self‐assembled monolayer (SAM) adsorption and reduction processes. Here, we choose the system of interest, being thiolacetyl‐terminated 2‐phenylene ethynylene‐substituted anthraquinone molecule (2‐AQ) on gold electrodes in buffered aqueous and aprotic solutions. In the buffered aqueous solution, the results of cyclic voltammetry and EC‐SERS measurements, as well as DFT calculations, indicate that the adsorbed molecules pass through a two‐electron two‐proton reduction reaction with cathodic polarization. In particular, the latter two methods confirmed the structural changes of SAMs during the process of redox reaction, 2‐AQ + 2e + 2H+ → 2‐AQH2, where 2‐AQ and 2‐AQH2 are the oxidized and reduced forms, respectively. In aprotic solutions (acetonitile), a stepwise reaction mechanism was proposed on the basis of the results of EC‐SERS and DFT calculations. The first reduction peak should be a half reaction process 2‐AQ + e → 2‐AQ−, where 2‐AQ− is a single electron reduced form. Compared with that of 2‐AQ SAMs in the buffered aqueous solution, the results of EC‐SERS and DFT calculations in aprotic solution suggested that the solvent effect significantly influences the redox process of 2‐AQ in electrochemical interfaces. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call