Abstract
The adsorption and reaction of silver on an oxidized Si(001) surface were investigated on the basis of Si 2p, Ag 3d and O 1s core-level photoemission measurements at room temperature (RT). We compared the present results with those obtained in the case of titanium in our previous study. We found that silver on an oxidized Si(001) surface at RT causes a reduction in the intensity of the Si1+ and Si2+ states and an increase in the intensity of the Si3+ and Si4+ states. Based on an analysis of the Ag 3d and O 1s states, we concluded that the change in the Si 2p oxidized states upon silver adsorption is due to charge transfer rather than conformation change, although the applicability of the charge transfer scheme may be dependent on the thickness of the silver layer. We also deduced that penetration of silver atoms through a thin silicon oxide film occurs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electron Spectroscopy and Related Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.