Abstract

We evaluated the adsorptive/photodegradation properties of hydroxyapatite. Hydroxyapatite was synthesized by two different precipitation methods and examined for the removal of two kinds of textile dye. The physicochemical properties of the products were characterized using Fourier transform infrared, X-ray diffraction, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. The effects of different parameters, including hydroxyapatite synthesis method and removal process type, pH, reaction time, temperature and amount of hydroxyapatite, were investigated and optimized by Taguchi design. The kinetics of adsorption and isotherm studies showed that the pseudo-second-order model and the Freundlich isotherm were the best choices to describe the adsorptive behavior of hydroxyapatite. Photocatalytic degradation of dye followed Langmuir-Hinshelwood mechanism, illustrated a pseudo-first-order kinetic model with the adsorption equilibrium constant and kinetic rate constant of surface reaction equal to 0.011 (l mg-1) and 1.3 (mg l-1 min-1), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call