Abstract

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid) has been widely used as organic arsenic additive in animal industry. In this study, the adsorption of roxarsone on TiO₂ under dark conditions, the photocatalytic decomposition of roxarsone under UV/TiO₂, and the possible photocatalytic pathway were investigated. At the initial concentration of 5-35 mg/L, the adsorption of roxarsone fitted well with the pseudo-second-order kinetics. The isotherms analysis showed that the Langmuir model was better than the Freundlich and Dubinin–Radushkevich models for describing the adsorption process. After 7 h of photocatalytic decomposition, a complete disappearance of roxarsone was achieved. The pH value has a significant effect on both adsorption and photocatalytic decomposition of roxarsone. The results of high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) and gas chromatography-mass spectrometry (GC/MS) analyses proved the cleavage of the As-C bond during the photocatalytic decomposition process by TiO2 and the intermediates of the decomposition. Based on the results, a possible photocatalytic decomposition pathway was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.