Abstract

The adsorption and photodecomposition of seven kinds of amino acids on a TiO2 surface were investigated by zeta potential measurements and 1H NMR spectroscopy in TiO2 aqueous suspension systems. The decomposition rates increased in the order of Phe < Ala < Asp < Trp < Asn < His < Ser. For Phe, Trp, Asn, His, and Ser, the isoelectric point (IEP) of TiO2 shifted to a lower pH with increasing decomposition rates upon adsorption on TiO2, suggesting that the effective adsorption and photocatalytic sites for these amino acids should be the basic terminal OH on the solid surface. Since the amino acids that decomposed faster than the others contain -OH (Ser), -NH (Trp, His), or -NH2 (Asn) in their side chain, they are considered to interact with the basic terminal OH groups more preferably by the side chain and are vulnerable to photocatalytic oxidation. On the other hand, Ala interacts with the acidic bridged OH on TiO2 to cause an IEP shift to a higher pH. The correlation of the surface hydroxyl groups with the photocatalysis of amino acids was verified by the use of calcined TiO2 without surface hydroxyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.