Abstract

Adsorption and photocatalytic oxidation of acetaldehyde have been investigated on TiO2 and sulfate-modified TiO2 films (denoted SO4TiO2). In situ Fourier transform infrared spectroscopy was used to study surface reactions as a function of time and number of experimental cycles. Spectral analysis and micro-kinetic modeling show that crotonaldehyde formation occurs spontaneously on TiO2 but is impeded on SO4TiO2, where instead acetaldehyde desorption is significant. Photo-oxidation yields significant amounts of formate on TiO2 and was identified as the rate-determining step and associated with site blocking. Significantly smaller amounts of formate were observed on SO4TiO2, which is due to the acidity of this surface resulting in weaker bonding of aldehyde and carboxylate intermediate species. Our results are of considerable interest for applications to photocatalytic air purification and to surfaces with controlled wettability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call