Abstract

BackgroundIn the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, thus decreasing the yield of fermentation and the production of useful products. Understanding the interaction between lignin and cellulase is necessary to optimize the components of cellulase mixture, genetically engineer high-efficiency cellulase, and reduce cost of bioconversion. Most lignin is not removed during liquid hot water (LHW) pretreatment, and the characteristics of lignin in solid substrate are also changed. To understand the interactions between cellulase and lignin, this study investigated the change in the characteristics of lignin obtained from corn stover, as well as the behavior of cellulase adsorption onto lignin, under various severities of LHW pretreatment.ResultsLHW pretreatment removed most hemicellulose and some lignin in corn stover, as well as improved enzymatic digestibility of corn stover. After LHW pretreatment, the molecular weight of lignin obviously increased, whereas its polydispersity decreased and became more negative. The hydrophobicity and functional groups in lignin also changed. Adsorption of cellulase from Penicillium oxalicum onto lignin isolated from corn stover was enhanced after LHW pretreatment, and increased under increasing pretreatment severity. Different adsorption behaviors were observed in different lignin samples and components of cellulase mixtures, even in different cellobiohydrolases (CBHs), endo-beta-1, 4-glucanases (EGs). The greatest reduction in enzyme activity caused by lignin was observed in CBH, followed by that in xylanase and then in EG and β-Glucosidase (BGL). The adsorption behavior exerted different effects on subsequent enzymatic hydrolysis of various biomass substrates. Hydrophobic and electrostatic interactions may be important factors affecting different adsorption behaviors between lignin and cellulase.ConclusionsLHW pretreatment changed the characteristics of the remaining lignin in corn stover, thus affected the adsorption behavior of lignin toward cellulase. For different protein components in cellulase solution from P. oxalicum, electrostatic action was a main factor influencing the adsorption of EG and xylanase onto lignin in corn stover, while hydrophobicity affected the adsorption of CBH and BGL onto lignin.

Highlights

  • In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, decreasing the yield of fermentation and the production of useful products

  • The results of enzymatic hydrolysis showed that liquid hot water (LHW) pretreatment obviously increased the conversion of cellulose into glucose during enzymatic hydrolysis

  • Contents of all components were based on oven dry weight of the measured substrate a Removal of lignin = (the content of lignin or hemicellulose in pretreated corn stover × solid yield (%))/the content of lignin or hemicellulose in untreated corn stover example, the conversion of cellulose to glucose in corn stover pretreated at a severity of 3.9 increased from 30 to 68 % compared with that in untreated corn stover

Read more

Summary

Introduction

In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, decreasing the yield of fermentation and the production of useful products. Most lignin is not removed during liquid hot water (LHW) pretreatment, and the characteristics of lignin in solid substrate are changed. To understand the interactions between cellulase and lignin, this study investigated the change in the characteristics of lignin obtained from corn stover, as well as the behavior of cellulase adsorption onto lignin, under various severities of LHW pretreatment. Our previous studies showed that LHW pretreatment effectively improved the enzymatic hydrolysis of some straw materials, such as corn stover and reed [3, 10], and cellulose in water insoluble solid can be highly efficiently hydrolyzed into glucose using cellulase after pretreatment. Only partial lignin in biomass was dissolved out and the structure of the lignin in the pretreated solid residuals was changed during LHW pretreatment [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call