Abstract

The adsorption of cationic Methylene Blue (MB) and anionic Procion Crimson H-EXL (PC) dyes from aqueous medium on pyrophyllite was studied. Changes in the electrokinetics of pyrophyllite as a function of pH were investigated in the absence and presence of multivalent cations. The results show that pyrophyllite in water exhibits a negative surface charge within the range pH 2–12. Pyrophyllite is found to be a novel adsorbent for versatile removal of cationic and anionic dyes. The negative hydrophilic surface sites of pyrophyllite are responsible for the adsorption of cationic MB molecules. The adsorption of anionic PC dye is possible after a charge reversal by the addition of trivalent cation of Al. Nearly 2 min of contact time are found to be sufficient for the adsorption of both dyes to reach equilibrium. The experimental data follow a Langmuir isotherm with adsorption capacities of 70.42 and 71.43 mg dye per gram of pyrophyllite for MB and PC, respectively. For the adsorption of both MB and PC dyes, the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call