Abstract

The goal of this work was to investigate the dynamics of human plasma fibronectin (HFN) at the oil-water interface and to characterize its interactions with human serum albumin (HSA) by total internal reflection fluorescence microscopy (TIRFM). Among key results, we observed that fibronectin adsorption at the oil-water interface is rapid and essentially irreversible, even over short time scales. This may be due to the highly flexible nature of the protein, which allows its various domains to quickly attain energetically favorable conformations. On the other hand, HSA adsorption at the oil-water interface is relatively reversible at short times, and the protein is readily displaced by fibronectin even after HSA has been adsorbed at the interface for as long as 2 h. At longer adsorption times, HSA is able to more effectively resist complete displacement by fibronectin, although we observed significant fibronectin adsorption even under those conditions. Displacement of adsorbed fibronectin by HSA was negligible under all conditions. Fibronectin also adsorbs preferentially from a mixture of HFN and HSA, even when the concentration of HSA is substantially higher. This study is relevant to such emerging research thrusts as the development of biomimetic interfaces for a variety of applications, where there is a clear need for better understanding of the effects of interfacial competition, adsorption time scales, and extent of adsorption irreversibility on interfacial dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.