Abstract

Flocculation has been widely employed in treatment of mineral tailings and water management. In this study, a chitosan-graft-poly(acrylamide-dimethyl diallyl ammonium chloride) (Chi-g-P(AM-DMDAAC)) was synthesized in-house. The adsorption and interaction mechanisms of Chi-g-P(AM-DMDAAC) and an anionic polyacrylamide (APAM) in a two-step flocculation process of kaolinite were explored using settlement tests, zeta potential measurement, quartz crystal micro-balance with dissipation (QCM-D) and atomic force microscopy (AFM) technique. The type of primary flocculant was critical for the two-step flocculation process. The treatment of the kaolinite suspension using 1 mg/L of Chi-g-P(AM-DMDAAC) followed by adding 2 mg/L of APAM displayed more efficient flocculation performance. QCM-D results showed that three dissipative layers were assembled on model kaolinite surface after sequentially injecting 3.5 mg/L of Chi-g-P(AM-DMDAAC), 0.05 wt% kaolinite suspension and 2.5 mg/L of APAM. The above total adsorption amount (Δf of −64.9 Hz) was much higher than that of using the two flocculants in reverse order (Δf of −23.1 Hz). This result indicated that the adsorption layer of the positively charged Chi-g-P(AM-DMDAAC) on kaolinite surface provided active adsorption sites for APAM. Further AFM measurement confirmed that the average adhesion between the silicon tip adsorbed Chi-g-P(AM-DMDAAC) and model kaolinite surface in 2.5 mg/L APAM solution increased from 0.25 ± 0.1 nN to 4.2 ± 0.3 nN with the effective interaction range of 700 nm, which was stronger than that measured between a bare silicon tip and silica substrate in single-component-flocculant solutions. The highly efficient two-step flocculation process could be ascribed to the strong electrostatic attraction between the kaolinite and the oppositely charged Chi-g-P(AM-DMDAAC) and APAM. Findings in this study will benefit the development of environmentally friendly flocculant for mineral tailings and water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.