Abstract

We present a detailed analysis of the electronic and geometric bonding properties of the model alkene ethene on different mono- and bimetallic surfaces to establish the difference between adsorption energy and interaction energy and to elucidate the chemical character of a single platinum atom in different chemical environments. The adsorption of ethene on Pt(1 1 1) at 100 K leads to two adsorption states, which are commonly described as being of di- σ-type (bidentate, μ 2η 2) and π-type (monodentate, μ 1η 2). While the later is the minority species on Pt(1 1 1) it is of larger abundance on the platinum alloys. We have chosen π-bonded ethene for our study since it can be found on Pt(1 1 1), the Pt 3Sn and Pt 2Sn surface alloys, and Cu 3Pt(1 1 1). Density functional theory calculations of the adsorption structures, site and decomposed densities of states, as well as partial charge densities in conjunction with vibrational spectroscopy show that the bonding, i.e. the interaction energy, of the π ethene is only weakly influenced by alloying. Even in a copper matrix – as in the case of Cu 3Pt(1 1 1) – the bonding platinum atom essentially keeps its chemical identity and the interaction energy is reduced by only 14% compared to Pt(1 1 1). This observation suggests that bonding on surfaces is a strongly localized phenomenon. However, the adsorption energy decreases significantly due to alloying, which is attributed to the varying local relaxation of the different metal surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call