Abstract

Abstract Intrusion of toxic heavy-metal cations into water-distribution systems (WDS) may cause severe adverse health-effects on large populations, along with an undesirable psychological impact. The corrosion (scale) layer, that invariably develops on the pipes’ inner walls, is capable of adsorbing a significant mass of metal-cations and releasing them thereafter via diffusion to the water once operation is resumed, thereby causing a secondary contamination event. To overcome this, the contaminant should be completely removed, in a controlled fashion, from both the aqueous and scale phases, with minimum damage to the pipe's physical stature. This study determined the range of the Cd(II) adsorption capacity of corrosion-scales and quantified alternative treatments for desorbing it, using an assortment of metal water-pipes, extracted from the WDS. Batch, water-recirculation and flow-through experiments were conducted to determine the extent of Cd(II) adsorption and the best way to desorb it. Corrosion-scales showed substantial Cd(II)-absorption capacity (up to 0.75 mg Cd(II)/g scale) with an approximately linear relation between the aqueous Cd(II) concentration and the adsorbed mass. Desorption experiments included dosages of various acids. Sequential rinsing (eight pipe-volumes) by pH3 solution was found to be the best approach, releasing close to ∼100% of the adsorbed Cd(II), with only a minor effect on the pipes’ integrity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call