Abstract

Phosphorus-based biochar can effectively immobilize lead (Pb) in soils, but the effects of soluble and insoluble phosphate on the remediation efficiency of Pb and phosphorus (P) release risks remain largely unknown. In this study, three biochars were produced from reed (Phragmites australis L.) straw, potassium dihydrogen phosphate (PDP, soluble) and hydroxyapatite (HAP, insoluble) modified reed straws and marked as BC, BCP, and BCH, respectively. Pb adsorptions and immobilizations by the three biochars and their P release risks were investigated. The P release kinetics of the three biochars were all fitted with the pseudo-second-order kinetic model and the P-release capacity followed the order of BCP > BCH > BC. The sorption isotherms of Pb2+ by three biochars were better described using the Langmuir model and the maximum adsorption capacities of BCP (59.3 mg/g) and BCH (58.8 mg/g) were higher than that of BC (48.1 mg/g). However, the P concentrations remained in BCP treated solution were significantly higher than those in BCH and BC under initial Pb2+ concentrations in the ranges of 5–25 mg/L. Soil pH and available P were increased with the increasing dosage of BCP and BCH, decreasing CaCl2-extractable Pb concentrations. BCH was more effective to decrease the exchangeable Pb and transform it into iron/manganese oxides and residual fractions. Compared to BC, BCH applications in the range of 2–5% can significantly increase labile P by 15.2–17.7%, but 21.0–33.6% for BCP, indicating BCP had a higher P release risk. The major implication is that HAP-modified biochar can effectively immobilize Pb and decrease P release risks compared to soluble P-modified biochar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call