Abstract

The formation of polycatalytic enzyme complexes may enhance the effectiveness of enzymes due to improved substrate interaction and synergistic actions of multiple enzymes in proximity. Much effort has been made to develop highly efficient polycatalytic cellulase complexes by immobilizing cellulases on low-cost polymer or nanoparticle scaffolds, aiming at their potential applications in biomass conversion to fuels. However, some key cellulases carry out the hydrolytic reaction on crystalline cellulose in a directional, processive manner. A large, artificial polycatalytic complex is unlikely to undergo a highly coordinated motion to slide on the cellulose surface as a whole unit. The mechanism underlying the activity enhancements observed in some artificial cellulase complexes and the limit of this approach remain elusive. Herein, we report the synthesis of polycatalytic cellulase complexes bound to colloidal polymer nanoparticles with a magnetic core and describe their unique adsorption, hydrolytic activities, and motions on cellulose. The polycatalytic clusters of cellulases on colloidal polymers show an increased rate of hydrolytic reactions on cellulose, but this was observed mainly at relatively low cellulase-to-cellulose ratios. Enhanced efficiency is mainly attributed to increased local concentrations of cellulases on the scaffolds and their polyvalent interactions with cellulose. However, once bound, the polycatalytic complexes can only carry out reactions locally and are not capable of relocating to new sites rapidly due to their lack of long-range surface mobility and their extremely tight binding. The development of highly optimized polycatalytic complexes may arise by developing novel nanoscaffolds that induce concerted motion of the complex as a whole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call