Abstract

We present the results of scaling analysis of diblock copolymers adsorbed on stripe-patterned surfaces of various widths. Our previous studies [K. Sumithra and E. Straube, J. Chem. Phys. 125, 154701 (2006)] show that the adsorption of diblock copolymer on patterned surfaces yields two peaks in the specific heat capacity, thereby indicating two transition. In the current study, we characterize these two transitions. The scaling of the adsorption energy data proves that the first peak in the heat capacity curve is, in fact, associated with the adsorption transition. We found that for this transition the classical scaling laws are obeyed and that the critical crossover exponent is unaltered with respect to the case of homogeneous polymers. However, we found a change in the scaling exponent in the case of parallel component of the radius of gyration. It is evident from the scaling analysis of the parallel component of the radius of gyration that the chain is stretched along the direction of the stripes. The scaling plot shows, for (square root <Rg parallel2>)/Nnu, an exponent of approximately 0.55 which is much different from that expected of a self-avoiding chain (nud=2-nu)/phi which is 0.25. The observed value is closer to an exponent of (nud=1-nu)/phi=0.69, for a completely stretched chain in one dimension. The perpendicular component of the radius of gyration <Rg perpendicular2> shows deviation from the power law and the slope is steeper than the expected value of -2. We have also defined an order parameter to characterize the second transition and have found that it corresponds to a freezing transition where there are only a few dominant conformations. The perpendicular component of the radius of gyration also supports this information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call