Abstract
The adsorption and condensation of benzene on ZnO(101̄0) was investigated by thermal desorption spectroscopy and LEED. The first monolayer shows an ordered c(2 × 2) super-structure. First order desorption is observed. The desorption energy and frequency factor decrease from 73 to 56 kJ mole −1 and from ~10 15 to ~10 12 s −1, respectively, with coverage increasing to 0.85. The second layer is more weakly bound. Two-dimensional (2D) island formation is deduced from peak shape analysis. Near completion, the second layer converts to a more tightly bound configuration as deduced from a sudden shift of the desorption peak and the formation of an additional c(4 × 3) LEED pattern. This pattern which can be identified as a property of bulk benzene is preserved upon epitaxial growth of the 3D benzene crystal. Angular resolved UPS measurements indicate the benzene molecules of the first layer to be arranged in an oblique position of low symmetry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.