Abstract

This paper discusses the adsorption and dissociation of the hydrogen sulfide (H2S) molecule on the titanium dioxide surface. They were studied by density function theory (DFT). The GGA + U approach was used to analyze the adsorption behavior of the H2S molecule on the TiO2 anatase (100) surface. The results presented include adsorption energies, structural and electronic properties, charge transfer and work function. Different adsorption configurations are considered with coordination of H2S at the surface (Ti5c, (Ti5c)2, O2c and O3c sites). The calculated adsorption energies are −0.31, −0.28, −1.14 and −5.66 eV. The most favorable adsorption sites lead to the dissociation of H2S into HS and H, where the S atom of HS binds to Ti5c or O2c atoms, leaving a dissociated H atom bonded to another O2c site. Analysis of Bader’s charges reveals a significant charge transfer between the molecule and the surface of the TiO2 anatase. The adsorption process reduces the work function and bandgap of the system, which improves the photocatalytic properties of TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.