Abstract

Doped porous SiC nanostructures with metallic atoms, nanoclusters and nanoparticles have been recognized as promising materials for hydrogen storage. With this regards transition metal elements are interesting impurities for use as doping. In view of this prospect, a theoretical approach based on density functional theory (DFT) was applied to study of the interaction between hydrogen molecule and a graphene-like SiC sheet doped with palladium atom. We have selected a single graphene-like SiC layer, due to its more surface charge polarization in comparison with pure graphene which makes possible remarkable interactions with adsorbed hydrogen molecules. In our study we have included two different configurations of H2 adsorption: 1) at the first state, hydrogen atoms after adsorption stretched and distance between HH atoms has increased but their chemical bond doesn't break. In this situation a physical adsorption occurred and the binding energy restricts applicable interests where it is appropriate for reversible hydrogen storage; 2) at the second situation, atoms of hydrogen molecule discrete from each other and adsorption occurred in a chemical manner. As instance the when a H2 molecule interact simultaneously with Pd atom and SiC nanosheet, it can be dissociated as in this case a hydrogen atom makes bond with Pd atom and the other can be adsorbed chemically on the SiC nanosheet surface. More details about adsorption mechanism are discussed it the context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.