Abstract

The adsorption and diffusion of synthesis gas components (methanol, ethanol, H2, CO2, and CO molecules) in ZIF-7 by grand canonical Monte Carlo and molecular dynamics simulation were investigated. The initial diffusion coefficient at the beginning of the process depends on the kinetic diameter of the guest molecules. Also, the diffusion coefficient at equilibrium conditions probably depends on the interaction between the guest molecules with the ZIF-7 framework. The radial distribution function results indicate that the distribution of guest molecules in the framework is affected by the interaction between the guest molecules. These results indicate that the CO, CO2, and H2 guest molecules are adsorbed on both the Zn metal atom and the organic linker (especially the C1 atom). In contrast, the organic linker is the most favorable adsorption site for methanol and ethanol guest molecules. In addition, the diffusion coefficient of guest molecules in binary mixtures is related to the attraction or repulsion between the guest molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.