Abstract

The interaction between atomic hydrogen and microporous carbon is investigated by density functional theory (DFT) calculations. To reveal how the nanographene structures affect the atomic hydrogen uptake, which is caused by hydrogen spillover, chemisorption energies of a hydrogen atom on four graphene-like fragments are compared: a condensed hexagonal plane, two buckybowls, and a heptagon-containing curved structure. It is shown that hydrogen atoms adsorb strongly at the edge sites and on convex surfaces. Two hydrogen diffusion paths on the carbon surface are examined: hydrogen migration along the C–C bond and hydrogen desorption. The results suggest that a probable path depends on the nanographene structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.