Abstract
The relative acid strength and acid amount of solid acids has been determined from the adsorption and desorption of small molecules, such as argon. The order of activation energy for desorption of Ar from a solid acid, determined using temperature-programmed desorption (TPD), is sulfated zirconia > Cs2.5H0.5PW12O40 > proton-type zeolites > silica–alumina. The adsorption isotherms were analyzed using Langmuir and Henry equations. The Henry-type adsorption isotherms were also analyzed using the theory of Cremer and Flugge. The heat of Ar adsorption was 22 kJ mol−1 for sulfated zirconia and ca. 17 kJ mol−1 for mordenite, ZSM-5, and beta-zeolite. Molybdenum oxides reduced at 623 and 773 K exhibited a large heat of adsorption (19.3 and 19.7 kJ mol−1, respectively), and these materials are classified as superacids. W-Nb mixed-oxides and tungstated tin oxide (calcined at 1373 K), which are newly developed solid acids, had a heat of adsorption of 18.1 and 16.9 kJ mol−1, respectively. The type of acid site could be distinguished by comparing the heat of adsorption of Ar and N2. Our data indicate that Ar is useful for the characterization of solid acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.