Abstract

Addition of biomass chars (biochar) to soil reportedly suppresses emissions of nitrous oxide (N2O), a potent greenhouse and ozone-depleting gas, but the causes and endurance of the effect are unclear. To determine whether adsorption may play a role, adsorption isotherms of N2O were constructed at 273 K on outgassed samples of anoxically-prepared wood-derived chars (300–700 °C) and on a subset briefly reheated in air at 400 °C. Sorption by the chars was greater and more reversible than sorption by soils or soil mineral phases. Adsorption by chars increased with pyrolysis temperature and upon post-pyrolysis air oxidation. The Langmuir maximum capacity correlates well with the CO2-determined (but not N2-B.E.T.-determined) surface area. At environmentally realistic partial pressures in soil, N2O adsorption correlates with CO2 adsorption, and is found to predominate in the micropores (<1.5 nm), especially ultramicropores (<0.7 nm). Neither adsorption nor adsorption reversibility was affected by coating the char with soil organic matter extract. It is concluded that char added at levels above 1% in soil would act as a strong and reversible sink for N2O, and could be responsible for the temporary nature of N2O emission suppression observed in some cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.