Abstract
In this study, adsorption and desorption of mixtures of organic compounds commonly emitted from automotive painting operations were experimentally studied. A mixture of two alkanes and a mixture of eight organic compounds were adsorbed onto beaded activated carbon (BAC) and then thermally desorbed under nitrogen. Following both adsorption and regeneration, samples of the BAC were chemically extracted. Gas chromatography-mass spectrometry (GC-MS) was used to quantify the compounds in the adsorption and desorption gas streams and in the BAC extracts. In general, for both adsorbate mixtures, competitive adsorption resulted in displacing low boiling point compounds by high boiling point compounds during adsorption. In addition to boiling point, adsorbate structure and functionality affected adsorption dynamics. High boiling point compounds such as n-decane and 2,2-dimethylpropylbenzene were not completely desorbed after three hours regeneration at 288 °C indicating that these two compounds contributed to heel accumulation on the BAC. Additional compounds not present in the mixtures were detected in the extract of regenerated BAC possibly due to decomposition or other reactions during regeneration. Closure analysis based on breakthrough curves, solvent extraction of BAC and mass balance on the reactor provided consistent results of the amount of adsorbates on the BAC after adsorption and/or regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.