Abstract
Radionuclides released in water systems – as well as heavy metals and organic toxicants – sorb to both the suspended solid particles and the bed sediments. Sorption is usually represented mathematically by the distribution coefficient. This approach implies equilibrium between phases and instantaneous fixation (release) of the pollutant onto (from) the surface of the soil particle. However, empirical evidence suggests that for some radionuclides the fixation is not achieved instantaneously and that the reversibility of the process can be slow. Here the adsorption/desorption kinetics of 60Co and 137Cs in fresh water environments were simulated experimentally and later on modelled mathematically, while the influence of the most relevant factors affecting the sorption were taken into account. The experimental results suggest that for adsorption and the desorption more than 24 h are needed to reach equilibrium, moreover, It was observed that the desorption rate constants for 60Co and 137Cs lie within ranges which are of two to three orders of magnitude lower than the adsorption rate constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.