Abstract

A spherical PVC–MnO2 ion sieve of 2.0–3.5 mm diameter was prepared by the antisolvent method using synthesized Li4Mn5O12 ultrafine powder as the precursor, poly(vinyl chloride) as the binder, and N-methyl-2-pyrrolidone as solvent. Batch experiments of the adsorption capacity (isotherm) and adsorption rate of Li+ on the spherical PVC–MnO2 ion sieve were studied. Spherical PVC–MnO2 had a high adsorption capacity for Li+, and the isotherm data were well fitted by the Langmuir model; the adsorption kinetics were well described by the Lagergren equation. Furthermore, a mathematical model was set up to calculate the film mass transfer coefficient (kf) and pore diffusivity (Dp) of the adsorbent. Continuous flow experiments for study of Li+ adsorption breakthrough and the subsequent desorption (elution) in a PVC–MnO2 packed column were carried out employing six feed solutions of various pH values and concentrations of Li+, Na+, K+, and Mg2+ for simulating brine samples of various salt lakes and/or seawaters. Afte...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call