Abstract
Ketoprofen, a nonsteroidal anti-inflammatory drug (NSAID), was commonly found in treated wastewater due to its incomplete removal during sewage treatment plant processes. As treated wastewater is increasingly used for landscape irrigation, it is imperative to understand the leaching potential for ketoprofen in receiving soils. In this study, adsorption and degradation experiments were conducted in four U.S. soils with different physicochemical characteristics. Ketoprofen was not strongly adsorbed to the four soils with K(d) values ranging from 1.26 to 8.24 L kg(-1), suggesting its potential to move downward with percolating water. The adsorption was positively related to the soil organic matter (OM) content (R(2) = 0.890). Degradation experiment showed that half-lives (t(1/2)) of ketoprofen were 4.58 d in Arlington sandy loam (ASL, coarse-loamy, mixed, active, thermic Haplic Durixeralfs), 8.04 d in Hanford loamy sand (HLS, coarse-loamy, mixed, superactive, nonacid, thermic Typic Xerorthents), 15.37 d in Imperial silty clay (ISC, fine, semectitc, calcareous, hyperthermic Vertic Torrifluvents), and 27.61 d in Palouse silt loam (PSL) soil (fine-silty, mixed, superactive, mesic Pachic Ultic Haploxerolls), respectively. Degradation of ketoprofen in soils appeared to be influenced by the soil OM content. The prolonged t(1/2) by sterilization indicated that microbial degradation was the dominant pathway for ketoprofen degradation in soils, while photodegradation only contributed a small portion to the ketoprofen degradation. The t(1/2) and K(oc) values were fitted to screening models to predict the leaching potential of ketoprofen in soils. It appeared that relatively high leaching potential of ketoprofen existed in ISC and PSL soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.