Abstract

Experiments that provide insight into the elementary reaction steps of CxHy adsorbates are of crucial importance to better understand the chemistry of chain growth in Fischer–Tropsch synthesis (FTS). In the present study we use a combination of experimental and theoretical tools to explore the reactivity of C2Hx and C3Hx adsorbates derived from ethene and propene on the close-packed surface of cobalt. Adsorption studies show that both alkenes adsorb with a high sticking coefficient. Surface hydrogen does not affect the sticking coefficient but reduces the adsorption capacity of both ethene and propene by 50% and suppresses decomposition. On the other hand, even subsaturation quantities of COad strongly suppress alkene adsorption. Partial alkene dehydrogenation occurs at low surface temperature and predominantly yields acetylene and propyne. Ethylidyne and propylidyne can be formed as well, but only when the adsorbate coverage is high. Translated to FTS, the stable, hydrogen-lean adsorbates such as alkynes...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.