Abstract

A series of MnOx/TiO2 sorbents were synthesized via a sol-gel method and evaluated for elemental mercury (Hg0) removal under the low temperature conditions. The effects of manganese oxide contents (5-20wt.%), calcination temperatures of the sorbents (450-750 °C), reaction temperatures (50-200 °C) and flue gas components, such as H2S (0-5000 ppm), O2 (0-5%) and H2O (0-5%), on Hg0 adsorption and oxidation activity were investigated. The experimental results showed that the introduction of manganese oxide into the pure TiO2 obviously enhanced Hg0 removal ability. Particularly under the condition that 15 wt.% of manganese oxide content, calcination temperature of 550 °C and 1% O2, the adsorption capacity could be as high as 5.12 mg/g at 100 °C. In addition, O2 significantly enhanced the Hg0 removal efficiency. It works by offering the consumed adsorbed oxygen, which was delivered to Hg0 by redox circle between the changes of manganese states. Catalytic oxidation of Hg0 was the dominated way at 100 °C. Both H2...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.