Abstract
Catalytic ceramic nanofiltration (NF) is a promising technology for direct wastewater reclamation, given its high separation selectivity and reactive surfaces for oxidative removal of fouling. A better understanding of the relation between fouling types and oxidative cleaning efficacy under high organic loading conditions is of practical importance for realizing stable filtration/cleaning performance in long-term water reclamation operations. In this work, Fenton cleaning, using a hydrogen peroxide solution and an iron oxychloride catalyst pre-coat layer on top of commercially available ceramic NF membranes, was studied with respect to high organic loaded fouling, simulated by a concentrated sodium alginate solution in the presence of calcium. Adsorption (in the absence of a permeate flow) and constant-pressure filtration (with a permeate flow) experiments were performed to distinguish between permeance decreases as a result of either adsorptive or cake layer fouling. The results show that the flux evolution could be divided into an initial sharp flux decline, due to rapid adsorption of the foulants, and a subsequent gradual flux decrease, resulting from progressive cake build-up on the membrane. The two-stage flux decrease was enhanced during the constant-pressure filtration experiments, because they start at a high flux with a high fouling rate, while the flux gradually decreases as fouling proceeds. During multiple adsorption/cake filtration/Fenton cleaning cycles, the cake layer fouling was sufficiently removed by Fenton cleaning in contrast to the adsorptive fouling. However, the total permeate production during ceramic NF was not influenced by the remaining adsorptive fouling (after cleaning), since the adsorptive fouling always only occurs at the beginning of each cycle. The findings provide new insights into the criteria for evaluating and optimizing the efficacy of oxidative (Fenton) cleaning during ceramic NF in water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.