Abstract

During CdSe nanocrystal growth, loss of surface capping molecules occurs leading to a decrease of photoluminescence (PL) quantum yield. In general, aliphatic capping molecules are applied to passivate the surface of CdSe nanocrystals to modulate the optical properties of the CdSe. In this work, two kinds of alkylamine (n-butylamine (n-BA) and n-hexylamine (n-HA)) and oleic acid (OA) were used to modify the surfaces of the CdSe nanocrystals. From the PL spectra and quantum yield analyses, we observed that the PL emission peak positions of the modified CdSe nanocrystals have blue shifted for all three capping molecules. However, the PL quantum yield of the CdSe nanocrystals increased after introduction of the alkylamine molecules, but decreased with oleic acid. The detailed mechanism was not clear until now. In this study, a density function theory (DFT) simulation was employed to demonstrate binding energy and charge analyses of CdSe with n-BA, n-HA and OA. By comparing the binding energy of the bare CdSe nanocrystals to that of the CdSe with the capping molecules, it was shown that n-BA and n-HA as capping molecules help to increase the charge on Se and decrease it on cadmium of the CdSe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.