Abstract

ABSTRACT Many researchers have proposed analytical methods to measure the adsorption of di-sulpho fluorescent whitening agents (D-FWAs), but practical methods for D-FWA utilization in an actual paper mill have not been established. In particular, the D-FWA adsorption behavior must be monitored in paper mills to ensure the effective use of D-FWAs. This study used the zeta-potential of pulps as an indicator of the adsorption behavior of a D-FWA. We identified the relationship between the actual adsorption of the D-FWA and the zeta-potential of the pulps as a function of D-FWA addition. zeta-potential measurements were then used to analyze the D-FWA adsorption behavior under different conditions of pulp type, conductivity, and pH. The actual adsorption of a D-FWA was proportional to the Δzeta-potential of the pulps (i.e., the difference between the zeta-potential of a pulp containing no D-FWA and one containing the D-FWA). The Δzeta-potential of the pulps was therefore adopted for ad-sorption analysis. A higher adsorption of the D-FWA was observed onto Hw-BKP than onto Sw-BKP because of the shorter fiber length and higher fines content of Hw-BKP. A high conductivity and an acidic pH decreased the D-FWA adsorption because of direct effects of high ion concentrations and low pH on the D-FWA solubility. Therefore, a D-FWA must be added to Hw-BKP under low conductivity conditions and at neutral or alkaline pH to optimize the D-FWA adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.