Abstract

AbstractThe sluggish kinetics of oxygen reduction to water remains a significant limitation in the viability of proton‐exchange‐membrane fuel cells, yet details of the four‐electron oxygen reduction reaction remain elusive. Herein, we apply in situ infrared spectroscopy to probe the surface chemistry of a commercial carbon‐supported Pt nanoparticle catalyst during oxygen reduction. The IR spectra show potential‐dependent appearance of adsorbed superoxide and hydroperoxide intermediates on Pt. This strongly supports an associative pathway for oxygen reduction. Analysis of the adsorbates alongside the catalytic current suggests that another pathway must also be in operation, consistent with a parallel dissociative pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.