Abstract

A procedure for experimental modeling of sorption–desorption processes in the mixing zone of river and sea waters, which excludes the determination of the absolute concentrations of adsorbed chemical elements, has been proposed. Based on experimental data, quantitative characteristics of the ion-exchange transformation of dissolved matter runoff during the penetration of terrigenous material into the marine environment were obtained. The real input of calcium into the ocean as a result of desorption from the solid substances of river runoff increases by 8.3–8.7%, while input of sodium, potassium, and magnesium decreases by 14.0–14.6, 22.2–23.3, and 3.0–3.2% of their dissolved river runoff. For trace elements, sorption–desorption processes lead to an increase in the runoff of dissolved manganese, cobalt, nickel, cadmium, thallium, barium, and ammonium by 98.6–103.5, 20.6–21.6, 3.8–4.0, 15.6–16.5, 4.7–4.9, 20.3–21.3, and 0.8% and to a decrease in the runoff of dissolved lead and cesium by 9.1–9.4 and 2.6–2.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.