Abstract
The adsorbate-induced formation of sub-nanometer clusters on transition-metal single crystals observed in previous high-pressure microscopic studies hinted at the in-situ formation of unique active sites even on large nanoparticle catalysts. We propose that the adatom formation energy can be used as an energetic descriptor for the initial step toward the adsorbate-induced metal-cluster formation process. This descriptor can be efficiently computed using density functional theory (DFT) calculations and applied for screening and identification of metal catalysts where this phenomenon may play an important role in generating active sites in-situ. As a proof of concept, here, we construct an adatom formation energy database for three AuxCuy alloys (x:y = 3:1, 1:1, or 1:3) and eighteen adsorbates (H, C, N, O, F, S, Cl, Br, I, CHx, NHx (x = 1 – 3), CO, NO, and OH) commonly involved in catalytic reactions. The energetics of adatom formation were examined in all cases where the (111) terrace, (211) step-edge, and (874) kink were the sources of the adatom. We demonstrate that the presence of an adsorbate could alter not only the energetics for adatom formation but also the elemental nature of the preferred adatom being formed. Using our database, we identified promising systems which favor adsorbate-induced adatom formation under near-ambient conditions. Specifically, CO-induced adatom formation on all three Au-Cu alloy surfaces could occur under CO2 electroreduction (CO2RR) conditions. This phenomenon offers a qualitative explanation for the experimentally observed CO2RR activity on Au-Cu alloy catalysts. Our methodology offers an easily expandable and efficient approach for large-scale catalyst screening with regards to adatom/cluster formation under reaction conditions and provides insight into the possible nature of active sites on alloy catalysts from a novel perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.