Abstract

The role of incoherent tunneling in the diffusion of light atoms on surfaces is investigated. With this purpose, a Chudley–Elliot master equation constrained to nearest neighbors is considered within the Grabert–Weiss approach to quantum diffusion in periodic lattices. This model is applied to recent measurements of atomic H and D on Pt(111), rendering friction coefficients that are in the range of those available in the literature for other species of adsorbates. A simple extension of the model has also been considered to evaluate the relationship between coverage and tunneling and therefore the feasibility of the approach. An increase of the tunneling rate has been observed as the surface coverage decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.