Abstract

We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a $(d+1)$-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector $\beta$-functions, and some interesting properties of them are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for $d=4$. A relation between a choice of schemes and a Virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic $c$-theorem by finding out a full family of schemes where a trace anomaly coefficient is related with a holographic $c$-function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.