Abstract
We investigate a structure of a 4-dimensional bulk space constructed from the O(N) invariant critical φ4 model in 3-dimension using the conformal smearing. We calculate a bulk metric corresponding to the information metric and the bulk-to-boundary propagator for a composite scalar field φ2 in the large N expansion. We show that the bulk metric describes an asymptotic AdS space at both UV (near boundary) and IR (deep in the bulk) limits, which correspond to the asymptotic free UV fixed point and the Wilson-Fisher IR fixed point of the 3-dimensional φ4 model, respectively. The bulk-to-boundary scalar propagator, on the other hand, encodes ∆φ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\Delta }_{\\varphi^2} $$\\end{document} (the conformal dimension of φ2) into its z (a coordinate in the extra direction of the AdS space) dependence. Namely it correctly reproduces not only ∆φ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\Delta }_{\\varphi^2} $$\\end{document} = 1 at UV fixed point but also ∆φ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\Delta }_{\\varphi^2} $$\\end{document} = 2 at the IR fixed point for the boundary theory. Moreover, we confirm consistency with the GKP-Witten relation in the interacting theory that the coefficient of the z∆φ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {z}^{\\Delta _{\\varphi^2}} $$\\end{document} term in z → 0 limit agrees exactly with the two-point function of φ2 including an effect of the φ4 interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.