Abstract

The thermodynamics and phase transitions of magnetic Anti-de Sitter black holes were studied. We considered extended-phase-space thermodynamics, with the cosmological constant being a thermodynamic pressure and the black hole mass being treated as a chemical enthalpy. The extended-phase-space thermodynamics of black holes mimic the behavior of a Van der Waals liquid. Quantities conjugated to the coupling of nonlinear electrodynamics (NED) and a magnetic charge are obtained. Thermodynamic critical points of phase transitions are investigated. It was demonstrated that the first law of black hole thermodynamics and the generalized Smarr relation hold. The Joule–Thomson adiabatic expansion of NED-AdS black holes is studied. The dependence of inversion temperature on pressure and the minimum of the inversion temperature are found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call