Abstract
Inflammation plays a critical role in the development of neurodegenerative diseases. Adrenomedullin 2 (AM2), a member of the calcitonin gene-related peptide family, has been known to have anti-inflammatory effects. Here, we evaluated the anti-inflammatory effects of AM2 in LPS-activated microglia and BV2 cells. The endogenous mRNA and protein expressions of AM2, calcitonin receptor-like receptor (CLR), receptor activity-modifying proteins (RAMPs) including RAMP1, RAMP2 and RAMP3 and the production of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected by RT-PCR and Western blot. Our results revealed that LPS (1 μg/mL) significantly stimulated CLR, RAMP1, RAMP2 and RAMP3 protein expressions in BV2 microglia cells, but AM2 had a significant decrease. However, the mRNA levels of AM2, CLR, and RAMP1/2/3 were all markedly increased. LPS also induced obvious increases in mRNA and protein levels of the inflammatory mediators (TNF-α, IL-1β, COX2 and iNOS). More importantly, AM2 (10 nM) administration effectively inhibited the mRNA and protein expressions of these mediators induced by LPS and increased the cAMP content in LPS-stimulated BV2 cells. Furthermore, the antagonism with AM2 receptor antagonist IMD17-47, adrenomedullin (AM) receptor antagonist by AM22-52 or the inhibition of protein kinase A (PKA) activation by P1195 effectively prevented the inhibitory role of AM2 in LPS-induced production of the above inflammatory mediators. In conclusion, AM2 inhibits LPS-induced inflammation in BV2 microglia cells that may be mainly through AM receptor-mediated cAMP-PKA pathway. Our results indicate AM2 plays an important protective role in microglia inflammation, suggesting therapeutic potential for AM2 in neuroinflammation diseases caused by activated microglia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.