Abstract

We investigated the influence of the adrenocorticotropic fragment 1–24 [ACTH-(1–24)] on the blood levels of highly-reactive free radicals in a rat model of prolonged asphyxia. Anesthetized animals were endotracheally intubated and mechanically ventilated with room air; after a 10 min stabilization period, the ventilator was turned off to induce asphyxia for 5 min; then, the ventilator was turned back on, and, simultaneously, the rats were intravenously treated with either ACTH-(1–24) (160 μg/kg in a volume of 1 ml/kg) or equivolume saline. Free radicals were detected in arterial blood by electron spin resonance spectrometry using an ex vivo method that avoids injection of the spin-trapping agent employed (α-phenyl-N-tert-butylnitrone). Arterial pressure, electrocardiogram (ECG) and electroencephalogram (EEG) were monitored for the 60 min observation period, or until prior death. At the end of the 5 min period of respiratory arrest, blood levels of free radicals were about four times higher than those of the basal, pre-asphyxia condition, arterial pressure had dramatically decreased, ECG showed marked bradycardia and signs of ischemic damage and the EEG had become isoelectric. Treatment with ACTH-(1–24) produced an immediate normalization of the blood levels of free radicals, associated with a restoration of cardiovascular function and full recovery of EEG within 30–45 min; all the saline-treated rats, on the other hand, died within 6.89 ± 0.96 min. These results provide direct evidence that in a severe condition of prolonged asphyxia there is a rapid and massive production of highly-reactive free radicals and suggest that the resuscitating effect of adrenocorticotropin fragments in severe hypoxic conditions may be largely due to the inhibition of free radical overproduction during tissue reoxygenation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call