Abstract

Transducers of regulated cAMP-response element-binding protein (CREB) activity (TORC) are coactivators that can increase CREB transcriptional activity, suggesting that TORC may regulate the transcription of Aanat, a CREB-target gene. In the present study, we focused on the regulation of TORC2 and its role in Aanat transcription in the rat pineal gland. Although there was no endogenous Torc2 mRNA rhythm in the rat pineal gland and treatment of cultured pinealocytes with norepinephrine (NE) had no effect on the mRNA level of Torc2, the phosphorylation state and intracellular distribution of TORC2 protein were regulated by NE. Immunoblot analysis combined with cytosolic/nuclear fractionation or phosphatase treatment showed that TORC2 protein was rapidly dephosphorylated and translocated to the nucleus after NE stimulation in rat pinealocytes. Similar dephosphorylation of TORC2 also occurred nocturnally in the rat pineal gland. The NE-mediated TORC2 dephosphorylation was blocked by cotreatment with propranolol (a β-adrenergic antagonist) but not prazosin (an α(1)-adrenergic antagonist) and mimicked by dibutyryl cAMP, indicating the participation of the β-adrenergic receptor/cAMP pathway. Studies with protein phosphatase inhibitors showed that only okadaic acid and calyculin A were effective in blocking the NE-mediated TORC2 dephosphorylation, suggesting the involvement of protein phosphatase 2A in this dephosphorylation. Moreover, TORC2 overexpression had an enhancing effect on NE-stimulated Aanat transcription. Together, these results indicate that NE stimulation causes nuclear translocation of TORC2 by dephosphorylating the protein through a β-adrenoceptor/cAMP mechanism and that nuclear localization of TORC2 appears to regulate Aanat transcription by NE in the rat pineal gland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.