Abstract

Serial cryostat and paraffin-embedded sections through the atrioventricular junction of the rat heart were studied at the light-microscopic level after indirect immunohistochemical staining (tyrosine hydroxylase, neuropeptide Y, C-terminal flanking peptide of neuropeptide Y immunoreactivities) or silver impregnation. The distribution of these immunoreactivities in the Hissian ganglion (Moravec and Moravec 1984) as well as the relationships of the Hissian ganglion cells with the surrounding structures have been studied to assess its function. The results suggest that the Hissian ganglion is composed of large multipolar neurons displaying both tyrosine hydroxylase (TH) and related peptide (neuropeptide Y. C-terminal flanking peptide of neuropeptide Y) immunoreactivities. The dendritic projections of these adrenergic cells penetrate the reticular portion of the atrioventricular node and the upper segments of the interventricular septum where they constitute sensory-like corpuscles. The hypothesis that the adrenergic neurons of the atrioventricular junction are involved in short proprioceptive feedback loops necessary for beat-to-beat modulation of cardiac excitability and intracardiac conduction can thus be suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call