Abstract

Young, growing rats which had been chronically (2 weeks) adrenalectomized or parathyroidectomized were used to define the roles of the adrenal and parathyroid glands on the maintenance of normal circadian rhythms of DNA, collagen and non-collagen protein synthesis in the skeleton. The animals were conditioned to food being available ad libitum and to 12 h light: 12 h darkness (lights on from 08.00 to 20.00 h). The pace of DNA, collagen and non-collagen protein synthesis in different regions of the tibia (tibial growth cartilage, metaphysial bone and diaphysial bone) was measured by the in-vivo incorporation of tritiated thymidine (1 h) and radioactive proline (48 h). In intact rats there were no regional differences in the phasing of the circadian profiles; peak DNA and non-collagen protein synthesis occurred at the onset of the dark period while peak collagen synthesis occurred during the middle of the period of light. Adrenalectomy selectively abolished the regional DNA synthesis rhythms without altering the phases of the serum Ca and phosphorus (P) rhythms, which peak at mid-day and at the onset of darkness respectively. Parathyroidectomy abolished the regional rhythms for collagen and non-collagen protein synthesis and serum Ca rhythms, without altering the phase of the serum P and corticosterone rhythms. Dietary Ca-lactate supplements, which raised serum Ca levels towards normal in parathyroidectomized rats, were able to correct serum corticosterone values but did not normalize bone collagen and non-collagen protein synthesis values. These data indicate that the adrenal rhythm governs the proliferative activities of bone and cartilage cells, and that parathyroid hormone is essential to maintain normal collagen and non-collagen protein synthesis rhythms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call