Abstract
Adrenal androgen excess is found in approximately 25-60% of women with polycystic ovary syndrome (PCOS), but the mechanisms underlying PCOS-related adrenal androgen excess are unclear. The objective of this study was to determine whether adrenal androgen excess is manifest in a nonhuman primate model for PCOS. Six prenatally androgenized (PA) and six control female rhesus monkeys of similar age, body weight, and body mass index were studied during d 2-6 of two menstrual cycles or anovulatory 30-d periods. Predexamethasone adrenal steroid levels were assessed in the first cycle (cycle 1). In a subsequent cycle (cycle 2), occurring one to three cycles after cycle 1, adrenal steroids were determined 14.5-16.0 h after an i.m. injection of 0.5 mg/kg dexamethasone (postdexamethasone levels) and after an i.v. injection of 50 microg ACTH-(1-39). Both before and after dexamethasone, serum levels of dehydroepiandrosterone (DHEA) in PA females exceeded those in controls. After ACTH injection, PA females exhibited higher circulating levels of DHEA, androstenedione, and corticosterone but comparable levels of 17alpha-hydroxyprogesterone, cortisol, the sulfoconjugate of DHEA, and testosterone compared with controls. Enhanced basal and ACTH-stimulated adrenal androgen levels in PA female monkeys may reflect up-regulation of 17,20 lyase activity in the adrenal zona reticularis, causing adrenal androgen excess comparable with that found in PCOS women with adrenal androgen excess. These findings open the possibility that PCOS adrenal hyperandrogenism may have its origins in fetal androgen excess reprogramming of adrenocortical function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.