Abstract

Polybrominated diphenyl ethers (PBDEs) have been previously shown to alter various endocrine biosynthetic pathways. Growing epidemiological evidence suggests that PBDEs alter cardiovascular function. The goal of this study was to examine the effects of BDE-47 on adrenal corticosteroid pathways that play vital roles in cardiovascular homeostasis and pathophysiology. The effect of BDE-47 on aldosterone and cortisol secretion was characterized in a human adrenocortical cell line. HAC15 cells were exposed to various concentrations of BDE-47 (1 nM to 100 μM). Cell viability, corticosteroid secretion, gene expression of enzymes involved in corticosteroid synthesis, and metabolic activity was examined. Additionally, Sprague Dawley male rats were orally exposed to BDE-47 (10 or 100 µg/kg), 5 days per week for 16 weeks. Organ weights and plasma corticosteroid levels were measured. In HAC15 cells, basal and stimulated aldosterone and cortisol secretion was significantly increased by BDE-47. Gene expression of several enzymes involved in corticosteroid synthesis and mitochondrial metabolism also increased. In Sprague Dawley rats, adrenal but not heart, kidney, or liver weights, were significantly increased in BDE-47 treatment groups. Plasma corticosterone levels were significantly increased in the 100 µg BDE-47/kg treatment group. No change in plasma aldosterone levels were observed with BDE-47 exposure. These data indicate that BDE-47 disrupts the regulation of corticosteroid secretion and provides further evidence that PBDEs are potential endocrine disruptors. Future studies will determine the underlying molecular mechanism of altered corticosteroid production and examine whether these alterations result in underlying cardiovascular disease in our rodent model of 16-week BDE-47 exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.